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The growing importance of production con-
tracts, especially for some livestock species
and in certain regions, suggests that contracts
confer economic benefits on farmers. This
trend has, however, stimulated concerns about
the impacts of contracting on farm structure
and concentration, and environmental degra-
dation, which have led to efforts by vari-
ous levels of government to regulate contract
production.

For example, in the U.S. hog industry, be-
tween 1992 and 1998 the portion of feeder pig-
to-finish hog operations using production con-
tracts increased from 11% to 34%, while the
share of output produced under contract in-
creased from 22% to 63% (Key and McBride,
McBride and Key). Recent growth in hog con-
tracts have been particularly noteworthy in the
upper Midwest, with 2002 contracted produc-
tion accounting for 47% of the value of total
farm production in Iowa and Minnesota, com-
pared to only about 5% in 1996 and virtually
none in 1991. Meanwhile, production contract
levels in North Carolina, the other center of
hog production, have been relatively stable.

Production contracts offer several potential
advantages over independent production that
could explain their increasing prevalence, such
as lowering income risk for growers. Contract-
ing may also raise farm productivity by improv-
ing the quality of managerial inputs, speeding
the transfer of technical information to grow-
ers, and facilitating growers’ access to credit,
thereby permitting the adoption of newer,
more efficient technologies. At the same time,
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contractors gain by their access to grower re-
sources and ability to exploit economies of size
in livestock production. Future trends in agri-
cultural production contracting will thus de-
pend on the scope of these benefits, as well
as the future viability of cash markets and the
pace of vertical integration.

United States agricultural production pat-
terns suggest that observed structural changes
in U.S. agriculture such as the expansion of
contracting are linked to scale and technical
efficiencies, so that larger operations are in-
creasingly more productive than small farms.
Kumbhakar, Biswas, and Bailey (for dairy
farms) and Sharma, Leung, and Zaleski (for
hog farms) provide evidence that larger farms
tend to be more technically efficient. Paul and
Nehring and Paul et al. similarly link concen-
tration in corn and livestock farming to scale
and scope economies and efficiencies.

There is less direct evidence regarding the
potential economies associated with the use
of contracts. Some research, however, suggests
that hog production contracts are associated
with substantial productivity increases (Key
and McBride). This implies that efforts to reg-
ulate contracting operations may have signif-
icant economic costs, even though they may
also have positive environmental implications
in terms of limiting environmental damage
from waste.1

In this article we consider the economic
performance impacts of livestock production
contracts and associated waste generation. To
evaluate these impacts we estimate the ef-
fects of increased contracts and waste on pro-
ductivity, efficiency and scale economy (SE)
measures, for farms in different size (typol-
ogy)2 ranges, and with varying proportions of

1 In this article waste refers to manure nutrients produced by
livestock. The farm survey data used in this study indicate that
production of manure nutrients is higher on contract operations
than independent operations.

2 Farm typologies are distinguished by sales, operator occupa-
tion, assets, and total household income of the farm, as summarized
in Hoppe, Perry, and Banker.
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contracted production. We base our empirical
analysis on a farm-level production dataset,
recognizing a broad range of outputs and in-
puts, for 1991–2002.

We use an input distance function approach
to represent farms’ technological structure
in terms of minimum input use required to
produce given output levels, because farm-
ers typically have more short-term control
over their input than output decisions. The
resulting theoretical framework characterizes
input contributions per acre, which is con-
sistent with analysis of yields in traditional
agricultural studies but stems theoretically
from the homogeneity properties of the dis-
tance function. This primal representation
allows us to measure production structure
indicators such as marginal input/output con-
tributions and SEs, and has advantages over
dual measures representing economic opti-
mizing behavior, both because we do not
have data on prices across observations, and
because one might not wish to assume full
price responsiveness, due to input fixities and
time lags in farmers’ observation of output
prices.

We estimate our model by stochastic pro-
duction frontier (SPF) methods, using data
from an annual U.S. Department of Agricul-
ture (USDA) survey of farms, where fattened
cattle, hogs, and dairy are major components
of agricultural output. The farm-level data are
used to construct a pseudo-panel data set in
terms of cohorts, to deal with the problem of
linking annual cross-section data over time.
We distinguish crop (corn, soybeans, cotton,
“other”) and livestock outputs, and land, la-
bor, capital, fuel, chemicals (fertilizer, pesti-
cides), materials (feed, seed, and “other”), and
specific crop and animal inputs. The SPF meth-
ods used allow us to estimate both techni-
cal efficiency (TE) as a one-sided error term,
and its determinants through the stochastic
specification.

We find that smaller livestock farms are
less scale and technically efficient than larger
farms. Although increased contract use (and
to some extent waste production) augment the
input-saving associated with these efficiencies,
the separate magnitude of these impacts is
quite small. This may reflect the close link be-
tween contracting and farm size; commercial
farms do the most contracting. These results
suggest a competitive advantage of larger con-
tracted operations over smaller independent
operations, but that the primary impact arises
from scale effects.

The Data

The U.S. farm-level data used to construct the
panel data set are from the 1991–2002 Agricul-
tural Resources Management Study (ARMS),
Phase III survey. This is an annual survey cov-
ering U.S. farms in the forty-eight contiguous
states, conducted by the National Agricul-
tural Statistics Service, USDA, in coopera-
tion with the Economic Research Service. Our
data cover ten primary corn-producing states
in the Heartland and selected livestock states
and agricultural statistics districts: Illinois, In-
diana, Iowa, Kansas (including New Mexico,
Oklahoma, and the Texas panhandle to cap-
ture fattened cattle and hog production),
Missouri, Ohio (including Kentucky, North
Carolina and Virginia to capture hog produc-
tion), Nebraska (including Colorado, North
Dakota and South Dakota to capture fattened
cattle production), Michigan (including New
York and Pennsylvania to capture traditional
dairy production), Minnesota, and Wisconsin.

These data include information on the value
of marketing and production contracts by crop
and livestock species (CONT), and on ma-
nure nitrogen production per cultivated acre,
(waste, WAST).3 We also have data on the per-
centage of acres in biotech corn, soybeans, and
cotton, GMCRN , GMSOY , GMCOT , and pesti-
cide inputs, XP. Additional outputs and inputs
distinguished for our analysis include five spe-
cific outputs: YCRN = corn, YS = soybeans,
YCOT = cotton, YC = other crops, and YA =
livestock; and nine inputs, XLD = land, XL =
labor, XK = capital, XE = energy (fuel), XF =
fertilizer, XFD = feed, XSD = seed, XC = other
crop-specific materials, XA = other animal-
specific materials, and XO = all other operating
expenses. Time dummies, t1992–t2002, are also in-
cluded as fixed effects.

Agricultural outputs are computed as the
sum of the value of sales for each type of farm
product, in dollars per farm. The variable in-
puts are annual per-farm expenditures on each
input category. Capital machinery and land are
measured as the annualized flows of capital
services from assets and land. All these vari-
ables are deflated by the estimated increase or
decrease in agricultural production prices in
1992–2002 compared to 1991.4

3 This is based on survey inventory data and the estimated pro-
duction of manure and nitrogen by species, as calculated in Kellogg
et al.

4 These deflators are computed using the indexes of prices re-
ceived and paid (1990–92 = 100), Ag Statistics.
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Table 1. Summary Statistics 2001–02

Full Sample RES SM LG VLG

Percentage of weighted (population) farms 100 54.18 26.79 11.60 7.43
Percentage of weighted acres 100 18.97 22.69 29.05 29.29
Percentage of weighted output 100 8.53 10.18 22.00 59.29
Livestock ($/farm) 75,024 10,914 23,259 119,950 659,751
Manure N (lb/acre) 7.77 2.61 4.14 7.09 12.35
Contracting (percentage of production) 35.24 5.02 9.37 19.21 49.97

Analysis of the economic performance of
livestock farms and their determinants can-
not, however, be conducted on ARMS data di-
rectly. The ARMS survey collects annual cross-
section data, which are not directly amenable
to the analysis of panel data, as needed for
time series analysis. We circumvent this prob-
lem by using repeated cross-sections of data
across farm typologies to construct a cohort ap-
proximation of panel data. Such a panel is cre-
ated by grouping the individual observations
into homogeneous cohorts, distinguished ac-
cording to time-invariant characteristics, and
using the cohort means rather than the indi-
vidual farm-level observations for empirical
estimation.

We assigned the farm-level data to cohorts
based on farm type (retirement and residen-
tial, family, and corporate farms) and size
(sales), as discussed in Paul et al. The resulting
pseudo-panel data are the weighted mean val-
ues of the variables to be analyzed, by cohort,
state, and year. We thus have a balanced panel
of 1,560 annual observations (130 per year, for
our ten-state sample). For presentation of our
results, we group these cohorts into residential
farms (RES), small family farms (SM), larger
family farms (LG), and very large family and
nonfamily farms (VLG), and distinguish low
(LOW), medium (MED) and high (HIGH)
contracting-intensive states.5 To assure a large
number of observations per cohort for re-
gional analysis we aggregated the annual data
to two-year cells, summarizing the activities of
3,097 farms in 1991/92, 2,599 farms in 1993/94,
4,731 farms in 1995/96, 6,784 farms in 1997/98,
6,307 farms in 1999/2000, and 5,201 farms in
2001/2. Some summary statistics for 2001/2,
presented in table 1, document the sharp rise
across farm size in the value of livestock pro-
duction, production contracts, and manure nu-
trient production per acre in these data.

5 LOW states are Illinois, Indiana, Missouri, Michigan, and
Wisconsin. MED states are South Dakota (including Kansas) and
Nebraska. HIGH states are Iowa, Ohio, and Minnesota.

The Model

Empirical analysis of economic performance
requires representing the underlying multidi-
mensional (input and output) production tech-
nology. A general form for such a technology
may be characterized by an input set, L(Y, R),
summarizing the production frontier in terms
of the set of all input vectors X that can produce
the output vector Y, given the vector of shift
and environmental variables R (the CONT,
WAST, and GM indicators and time dummies).
From this production set we can specify an in-
put distance function (denoted by superscript
I) that identifies the minimum possible input
levels for producing a given output vector as
follows:

DI (X, Y, R)

= max{� : (X/�) ∈ L(Y, R)}.
(1)

DI(X, Y, R) is, therefore, essentially a multi-
input input-requirement function, represent-
ing the production technology while allowing
deviations from the frontier.

We estimate this function using SPF tech-
niques, assuming TE is imputed as a radial
contraction of inputs to the frontier (constant
input composition). The econometric model
includes two error terms, a random error term,
v, assumed to be normally distributed, and a
one-sided error term, u, assumed to be dis-
tributed as a half normal, to represent the dis-
tance from the frontier.

Estimating DI(X, Y, R) requires imposing
linear homogeneity in input levels (Färe and
Primont), which is accomplished through nor-
malization (Lovell et al.); DI(X, Y, R)/X1 =
DI(X/X1, Y, R) = DI(X∗, Y, R).6 Approximat-
ing this function by a translog functional form
to limit a priori restrictions on the relationships
among its arguments results in

6 By definition, linear homogeneity implies that DI (�X, Y, R) =
�DI (X, Y, R) for any � > 0; so if � is set arbitrarily at 1/X1, DI (X,
Y, R)/X1 = DI (X/X1, Y, R).
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ln DI
it

/
X1,i t

= �0 + �m�m ln X∗
mit

+ 0.5�m�n�mn ln X∗
mit ln X∗

nit

+ �k�k ln Ykit

+ 0.5�k�l�kl ln Ykit ln Ylit

+ �q�q Rqit

+ 0.5�q�r �qr Rqit Rrit

+ �k�m�km ln Ykit ln X∗
mit

+ �q�m�qm ln Rqit ln X∗
mit

+ �k�q�kq ln Ykit ln Rqit + vit

= TL(X∗, Y, R) + vi t or

(2a)

− ln X1,i t = TL(X∗, Y, R) + vit − ln DI
it

= TL(X∗, Y, R) + vit − uit

(2b)

where i denotes farm, t the time period, k and
l the outputs, m and n the inputs, and q and
r the R variables. We specify X1 as land, so
the function is specified on a per-acre basis,
consistent with much of the literature on farm
production in terms of yields.

In addition, the distance from the frontier,
−ln DI

it , is explicitly characterized as the tech-
nical inefficiency error −uit. As in Battese
and Coelli,7 we use maximum likelihood (ML)
methods to estimate (2b) as an error compo-
nents model, assuming −uit is a nonnegative
random variable independently distributed as
a truncation at zero of the N(mit, �2

u ) distribu-
tion, where mit = Rit�, Rit is a vector of farm
efficiency determinants (assumed here to be
the factors in the R vector), and � is a vector of
estimable parameters. The random error com-
ponent vi t is assumed to be independently and
identically distributed, N(0, �2

v ).
The productivity impacts (marginal pro-

ductive contributions, MPC) of outputs or
inputs can be estimated from this model by
the first-order elasticities MPCk = −εDI,Y k =
−∂ ln DI (X,Y, R)/∂ lnYk = εX1,Y k and MPCm =
−εDI,X∗k = −∂ ln DI (X,Y, R)/∂ ln X∗

m = εX1,X∗m .
MPCk indicates the increase in overall input
use when output expands (and so should be
positive, like a marginal cost or output elastic-
ity measure), and MPCm indicates the shadow
value (Färe and Primont) of the mth input rel-
ative to X1 (and so should be negative, like the

7 We used Tim Coelli’s FRONTIER package for the SPF esti-
mation, and computed the measures using PC-TSP.

slope of an isoquant). Similarly, the marginal
productive contributions of structural factors
(CONT, WAST, and the time shifters) can be
measured through the elasticities MPCRq =
−εDI,Rq = −∂ ln DI (X, Y, R)/∂Rq = εX1,Rq (if
εX1,Rq < 0, increased Rq implies that less
input is required to produce a given output,
which implies enhanced productivity, and vice
versa).8

Scale economies are calculated as the
combined contribution of the K outputs
Yk, or the scale elasticity SE = −εDI,Y =
−�k∂ ln DI (X,Y, R)/∂ lnYk = εX1,Y . That is, the
sum of the input elasticities, �k ∂lnX1/∂lnYk,
indicates the overall input–output relationship
and thus returns to scale. The extent of scale
economies is thus implied by the shortfall of
scale economies from 1; if scale economies
< 1 inputs do not increase proportionately
with output levels, implying increasing returns
to scale.

The second-order effects of the R factors on
output and input contributions and overall SEs
can, in turn, be measured as

εMPCk,Rq

= −∂ ln εDI Y k/∂Rq

= −∂2 ln DI(X, Y, R)/∂ ln Yk∂Rq ,

εMPCm,Rq

= ∂ ln εDI X∗m/∂Rq

= −∂2 ln DI (X, Y, R)/∂ ln X∗
m Rq

and

εSE,Rq = ∂ ln SE/∂Rq .

These measures, therefore, indicate whe-
ther, for example, more contracting increases
or reduces the input use associated with pro-
duction of Yk.

Finally, TE “scores” are estimated as TE =
exp(−uit). The impact of changes in Rq on TE
can also be measured by the corresponding �
coefficient in the inefficiency specification for
−uit.

The Empirical Results

Although most of the parameter estimates
(available on request from the authors) are not

8 Note that a standard “productivity” or “technical change” mea-
sure, usually defined as the elasticity with respect to time, or the
time trend of the input–output relationship, is not targeted here.
Elasticities with respect to the time dummies provide indications
of production frontier shifts for each time period, but for short
time series other external factors such as weather often confound
estimation of a real technical change trend.
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Table 2. Second-Order Impacts of CONT and WAST

SE Elasticities Estimate t-Statistic MPC Elasticities Estimate t-Statistic

εSE,CONT −0.0008 −4.58 εMPCYC,CONT 0.0018 3.50
εSE,WAST 0.0001 2.72 εMPCYC,WAST 0.0002 3.68

εMPCYA,CONT −0.0026 −6.59
εMPCYA,WAST −0.0001 −3.60

Table 3. Estimated Scale Economies, Technical Efficiency, and Marginal Productivity Contri-
butions for CONT and WAST

Performance
Measures Full Sample t-Statistic LOW t-Statistic MED t-Statistic HIGH t-Statistic

SE 0.656 73.65 0.658 70.14 0.642 66.18 0.663 74.90
TE 0.858 0.857 0.857 0.860
MPCCONT −0.013 −11.45 −0.014 −11.99 −0.011 −8.60 −0.014 −11.89
MPCWAST 0.0002 1.47 0.0002 1.23 0.0004 2.13 0.0002 1.29

RES t-Statistic SM t-Statistic LG t-Statistic VLG t-Statistic

SE 0.471 45.10 0.523 54.85 0.760 73.39 0.872 67.71
TE 0.779 0.838 0.894 0.915
MPCCONT −0.011 −12.19 −0.012 −11.99 −0.014 −10.65 −0.016 −11.51
MPCWAST 0.0001 1.11 0.0002 1.24 0.0003 1.71 0.0003 1.45

very explanatory due to the flexible functional
form (so the elasticity measures are combina-
tions of various parameters and data), some
estimates are directly interpretable. In particu-
lar, the productive impacts of both CONT and
WAST (�YA,CONT = 0.002, �Y C,CONT = −0.003,
�YA,WAST = 0.0002, and �Y C,WAST = −0.0001)
are statistically significant, although reversed
in sign. That is, increased contracting and waste
appear to increase the productive contribution
of (decrease the inputs required for) livestock,
but the reverse is true for “other” crops. This is
consistent with the second-order productivity
elasticities representing the effects of CONT
and WAST on YA and YC in table 2. We also
find that both CONT and WAST have a “pro-
ductive” TE contribution through their � co-
efficients (�CONT = 0.025 and �WAST = 0.001),
although only for CONT is this contribution
statistically significant at the 5% level.9

Table 3 reports the levels of our overall per-
formance indicators (SE and TE), and the pro-
ductive contributions (MPCs) of contracts and
waste, for the whole sample, for different size
farms, and for LOW, MED, and HIGH CONT-
intensive states. The elasticity measures are

9 Although at an initial glance these results appear potentially
inconsistent, since both high CONT and WAST levels might be
expected to arise from livestock-intensive operations, high con-
tracting likely reflects a greater proportion of large hog opera-
tions, and high WAST a greater proportion of large dairy-intensive
operations.

evaluated at the data averages for the partic-
ular sample under consideration, to allow es-
timation of standard errors through the delta
method. The TE measures are averages of the
estimated efficiency scores across all the obser-
vations in the sample.

The measures show strong SEs, which are
greatest for smaller farms, indicating scale inef-
ficiency for these farms (lower unit costs asso-
ciated with growth, due to increasing returns to
scale). By contrast, SEs do not seem closely re-
lated to the intensity of contracting. This is con-
sistent with the second-order SE elasticities
presented in table 2, that suggest that higher
contracting and lower waste are both sta-
tistically significantly associated with greater
SEs, but that the magnitude of the effect is
small.

Technical efficiency also increases with farm
size, with RES farms on average only reaching
about 80% of full “best practice” efficiency,
whereas VLG farms exhibit more than 90%
efficiency. The variation in TE across different
CONT-intensive states is again minimal, con-
sistent with the significant but small estimates
of inefficiency effects for CONT from the � pa-
rameters mentioned above.

It thus appears that although contracting has
a statistically significant impact on productiv-
ity, SEs, and TE, the economic significance
(magnitude of impact) is smaller than that as-
sociated simply with the size of operations.
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Table 4. Estimated MPCs for Outputs, Inputs, and Time Shifts, Full Sample

MPCYS 0.024 5.15 MPCXF 0.021 1.61 MPC1993 −0.204 −6.89
MPCYCOT 0.003 0.59 MPCXL −0.381 −26.99 MPC1995 −0.216 −7.56
MPCYO 0.048 11.93 MPCXE −0.079 −5.27 MPC1997 −0.301 −8.67
MPCYA 0.489 69.98 MPCXSD −0.145 −9.90 MPC1999 −0.330 −9.43

MPCXFD −0.193 −22.05 MPC2001 −0.229 −6.20
MPCXA −0.068 −14.52
MPCXC 0.011 1.94
MPCXO −0.050 −4.11
MPCXK −0.036 −2.39
MPCXp −0.098 −7.15

Note: t-statistics are in italics.

Table 4 presents the average MPCs across
all observations for each output and input, as
well as the time shifts (from the 1991–92 base),
to further evaluate the estimated production
patterns. The MPCs for the outputs represent
the proportional “marginal cost” or input-use
share of the output. By far the largest input
share is devoted to animal or livestock outputs
(YA)—nearly 50% on average (and increasing
from 40% to almost 65% as one moves from
smaller to larger farm sizes).

The MPCs for the inputs indicate the contri-
bution of that input to overall input use (sub-
stitutability). The largest (in absolute value)
MPC is for labor, followed by feed and seed.
The positive estimated shadow values for
fertilizer and crop-specific inputs may be due
to the heavier reliance on livestock production
of the farms in our sample. These estimates are,
however, small with large standard errors; the
difference of MPCF from zero is insignificant
and of MPCC only marginally significant at the
5% level.10 The time dummies also indicate
more productivity in terms of input per unit of
output over time, except for 2001–2 (the �2001
estimate is smaller than �1997, indicating an in-
ward shift of the production frontier, due per-
haps to some external factor such as weather).

Concluding Remarks

We have used an input distance function ap-
proach to evaluate scale and TE, and produc-
tive effects of contracting, for small as com-
pared to large farming operations. We find that
smaller operations and those with lower con-
tracting levels are less efficient overall than
larger-scale and contract-intensive entities, al-
though the independent impact of contracts

10 These effects are the same across observations because they
are simply based on the parameter estimates.

is small. This suggests competitive pressures
on smaller farms from the greater productiv-
ity (in terms of input use per unit of output) of
larger farms—especially those that more heav-
ily rely on contracts. It also suggests that more
stringent requirements for larger operations or
subsidization of smaller farms to meet regula-
tory requirements could have detrimental ef-
ficiency impacts.

In addition, since higher CONT and WAST
levels are associated with greater productiv-
ity, scale economies, and TE, policies that raise
costs on contracting to control concentration,
and on waste disposal to limit environmen-
tal damage, may reduce overall cost efficiency.
Our results also suggest, however, that these
impacts are likely to be small unless the poli-
cies also provide incentives to limit the scale of
production. Thus, one might expect the costs of
such restrictions to be counterbalanced by the
environmental and market benefits.
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